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Stochastic Thermal-Diffusion Forced Rayleigh
Scattering1

R. Schafer,2 A. Becker,2 and W. Kohler2, 3, 4

The holographic grating technique of thermal-diffusion forced Rayleigh scattering
(TDFRS) utilizes the Ludwig-Soret effect to induce a concentration modulation
within a binary liquid. The signal generation is described in terms of a linear
response formalism, and the memory function for the concentration mode g(t)
and its Fourier transform, the diffusion susceptibility, are measured by means of
pseudostochastic random binary sequences with flat power spectra in combina-
tion with fast Fourier transform and correlation techniques. For polydisperse
polymer solutions the individual modes contribute proportional to their concen-
tration to g(t), contrary to photon-correlation spectroscopy, where the correlation
function is dominated by the high molar mass components. Other advantages of
stochastic TDFRS are time-scale delocalization of dust spikes and frequency
multiplexing. Measurements are reported on monodisperse and bimodal poly-
styrene in toluene.

1. INTRODUCTION

A holographic interference grating written into a binary liquid, e.g.,
a polymer solution, gives rise to a secondary concentration grating driven
by the Ludwig-Soret effect, also termed thermal diffusion [1-3]. From
such thermal-diffusion forced Rayleigh scattering (TDFRS) experiments,
various transport coefficients, such as the thermal diffusivity, the mutual
diffusion coefficient, the thermal diffusion coefficient, and the Soret coef-
ficient, can be determined in a very direct way. Due to the micrometer
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22-27, 1997, Boulder, Colorado, U.S.A.
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diffusion length, the corresponding subsecond diffusion times, and the very
subtle perturbations of the sample, many problems associated with long-
term stability in traditional diffusion cell experiments disappear.

With respect to the measurement of center-of-mass diffusion, there
exist several similarities between TDFRS and photon-correlation spectros-
copy (PCS), but also significant differences. PCS relies on thermodynamic
concentration fluctuations. In dilute polymer solutions the scattering,
which is proportional to the molar mass, is dominated by the high-molar
mass components, and a few heavy particles can completely mask low
molar mass contributions.

TDFRS, on the other hand, allows for a coherent excitation with a
single, well-defined (q-vector. Since thermal diffusion is driven by the
applied temperature grating, there is considerable freedom in the selection
of the excitation time pattern, and periodic amplitude modulation has been
proposed in the literature [4].

It has been shown that TDFRS can be employed for polydispersity
analysis of dilute polymer solutions. The memory or the linear response func-
tion, which fully characterizes a linear system, is of particular interest because
of the even concentration proportional statistical weights of the different
molar mass components [5]. Simple attempts to measure the memory func-
tion directly by means of short excitation pulses suffer, however, from poor
signal-to-noise ratios due to the low spectral power density of the excitation.
Measurements with finite length pulses yield good signal-to-noise ratios, but
only the convolution of the memory function with the excitation. Due to
"holes" in the spectrum, a simple deconvolution is not possible.

In the following it is shown how pseudostochastic random binary
sequences together with fast Fourier transform and correlation techniques
can be employed to provide excitations with approximately white power
spectra and a high spectral power density for the measurement of the linear
response function of the concentration mode. Not all random binary
sequences, however, fulfil the requirement of a flat power spectrum. Excita-
tions with deconvolutable random binary sequences may also be viewed as
spectroscopic experiments in the frequency domain with frequency multi-
plexing, which yield the complex diffusion susceptibility, defined as the
Fourier transform of the linear response function.

2. THEORY

2.1. TDFRS Signal Generation

In the following the concept of TDFRS is outlined in a compact nota-
tion to provide the fundamental equations needed for the main part of this
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paper. For a more detailed discussion of the phenomenological model and
the experimental setup, the reader is referred to the literature [1-8].

For a description of the Ludwig-Soret effect in a binary liquid, an
extension of Fick's second law of diffusion is employed to calculate the
temporal and spatial evolution of the concentration c(x, t), measured in
weight fractions, under the boundary conditions imposed by the experiment:

Because of the underlying symmetry of the holographic experiment, a one-
dimensional description has been adopted, with the x-axis defined by the
grating vector q = 4PL–1 sin T/2. T is the angle between the two writing
beams, Dth is the thermal diffusivity, A is the absorption coefficient, p is the
density, and cp is the specific heat at constant pressure. From Eq. (2) the
time-dependent temperature distribution

Thermal-Diffusion Forced Rayleigh Scattering 3

T(x, t) is the time-dependent temperature distribution, and D is the trans-
lational and DT the thermal-diffusion coefficient. For TDFRS, T(x, t) is
obtained from the heat equation with the energy absorbed from the optical
interference grating I(x, t) = I0 + Iqe

iqx as the source term:

with

is obtained, neglecting spatially constant terms. Tth = (D t hq2)– 1 is the heat
diffusion time constant. Knowing T(x, t), the time dependent concentration
distribution is obtained from Eq. (1):

with
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T = (Dq2)–1 is the mass diffusion time constant. Since the concentration
changes are generally very subtle, the approximation c0 ~ c is used in the
following.

Both c and T couple to the refractive index n, resulting in a phase
grating

which is read by Bragg diffraction of a readout beam.
The heterodyne diffraction efficiency Chet(t), which is proportional to

the refractive index modulation depth nq(t), is obtained after normalization
to the signal generated by the temperature grating alone:

The memory or linear response function g(t) is4

Dilute solutions of polydisperse polymers, which cannot be described by a
single diffusive mode, are of particular interest. In this case Eq. (9) must be
replaced by a sum over all species k present in the sample:

Here the dilute solution approximation c ( 1 — c ) ~ c has been made.
At least in the case of dilute solutions of high polymers, there is a time

scale separation of more than three decades between the heat and the con-
centration mode, and for experiments on the time scale of the concentra-
tion mode, the temperature grating almost instantaneously follows the

4 Contrary to G(t) used in previous publications, g(t) has been chosen for a more consistent
notation.



optical one. Furthermore, (dn/dc k ) p , T and DT are approximately indepen-
dent of molar mass [9], which reduces the molar mass dependence of ak

to the concentration ck.
Generally, an experiment measures a convolution of the memory func-

tion of the concentration mode, g(t), with the time dependent temperature
excitation Tq(t). A straightforward experiment consists of a long excitation
pulse of finite length Tp>>Tk and constant amplitude. For polydisperse
polymer solutions, this results in a multiexponential decay function with
statistical weights akTk for the kth mode.

Ideally, the memory function g(t), which contains all information that
can be learned from a linear experiment, would be measured directly. In
the most simple case this is accomplished by shortening the excitation pulse
to T p < < T k , where a multiexponential decay function with statistical
weights proportional to ak or, within above approximations, proportional
to ck is obtained [5].

It is of interest to compare heterodyne TDFRS with the electric field
autocorrelation function as measured by PCS, the most widely applied
technique for the measurement of diffusion coefficients. With a scaling rela-
tion D a M–b, b < 1, for the molar mass dependence of the diffusion coef-
ficient, the statistical weights for the multiexponential decay functions are
ckMk, where a is characteristic for the experiment [5]. For TDFRS, with
short pulses, a = 0; with long excitation pulses, A = b is found. The change
of the average rate (T) = (T-1) as a function of exposure time is shown
in Fig. 1 for a polydisperse sample. For PCS, a =1, resulting in a strong
overestimation of the high-molar mass components in the PCS autocor-
relation function.

2.2. Measurement of the Memory Function

The problem when measuring g(t) directly by employing short
exposure times is obvious from the vanishing signal amplitudes in the insert
in Fig. 1, resulting in poor signal-to-noise ratios. The alternative of a
straightforward deconvolution of a measurement with a finite pulse length
is also not feasible due to holes in the power spectrum of the excitation.

A rather elegant way to measure the response function of a linear
system emerged with the availability of inexpensive fast digital-computer
hardware in combination with fast Fourier transform and correlation algo-
rithms. The basic idea is to use a deconvolutable excitation with a flat, e.g.,
white, power spectrum of high spectral power density in combination with
tailored deconvolution or correlation techniques. Such excitations can be
realized by means of suitable pseudostochastic binary noise sequences.

Thermal-Diffusion Forced Rayleigh Scattering 5
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Fig. 1. Exposure time dependence of the average
rate (T) for a mixture of polystyrene with M = 48
and M = 556 kg . mol–1 at equal concentrations of
0.0029 weight fractions. Exposure ranges from t = 0
up to the start of the respective decay curve. The data
are taken from Ref. 5.

6

A special variant of such sequences, maximum length binary sequences
(MLBS) [10], has been used successfully for Hadamard-NMR spectros-
copy [11].

2.2.1. Fundamental Equations

Before turning to the actual experiment, some general features of
linear systems, as far as they pertain to TDFRS, will briefly be summarized
in a problem-independent notation. Later, the respective quantities will be
mapped to the TDFRS experiment. The convention obeyed is as follows.

Signals are continuous functions in the time domain and denoted
in lower case with the argument in parentheses, e.g., x(t). Sampling at
constant intervals At produces a discrete approximation x[n] to the con-
tinuous signal, which is only defined at times t = n Tt, n =0, 1, 2,... . Square
brackets are used for the arguments of discrete functions. The Fourier
transform establishes the connection between the time and frequency
domains [12]:
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Frequency domain functions are denoted by capital letters. Of importance
for the TDFRS experiment is the discrete Fourier transform of an array of
N data points within a period of N Tt:

7

The connection with the frequency scale is given by

The response y(t) of a linear system to an excitation x(t) is a convolu-
tion of x(t) with the response function h(t):

The TDFRS experiments discussed are performed with periodic boundary
conditions, asking for the discrete periodic convolution

The convolution theorem turns Eqs. (17) and (18) into simple products in
frequency space:

The discrete periodic correlation is defined in analogy as

X* is the complex conjugate of X. No arguments are used in Eqs. (19) and
(21) since they apply to both the continuous and discrete cases.



From Eqs. (19) and (21), it is immediately evident that h is obtained
from the deconvolution

Fig. 2. Sketch of the signal generation. See text for
details.

followed by the transition to the time domain according to Eq. (12). From
the right-hand side of Eq. (22) it follows that h may also be determined by
cross correlation of the sample response y with the excitation x in case of
a white power spectrum with |X|2 = 1.

2.2.2. Definition of the Response Function

Before Eq. (22) can be applied to the experimental problem, the signal
flow in the experiment must be considered in detail to identify the proper
response function, the corrections that must be applied, and the errors
inferred by discrete sampling of the continuous signals. The signal flow is
summarized in Fig. 2, and a suitable mapping between the signals in the
figure and the actual physical quantities is the following:

A discrete binary sequence x[n] of 1 and —1, defined at times n Tt,
n = 0, 1,..., N— 1, is generated within the computer memory and converted
to a continuous binary voltage signal x(t), which drives the high-voltage
generator for the Pockels cell. The resulting amplitude of the optical inter-
ference grating, x'(t) = Iq(t)/I0, excites the sample, which, in principle,
could be described by a single response function h'(t) = gT(t) * g(t). h'(t)
is the convolution of the heat and the concentration modes as indicated by
the dashed bracket in Fig. 2.

Schafer, Becker, and Kohler8
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Due to the time scale separation of three to four decades between both
modes, it is, however, more convenient to focus on the response of the con-
centration mode and convolute the heat mode g T ( t ) = T–1 exp( — t/Tth) into
the effective excitation, hence,

9

Tq(t) is given in Eqs. (3) and (4).
Now, the effective linear response function h(t) can be identified with

g(t) as defined in Eqs. (9) and (10): h(t) = g(t). It contains both the
response of the concentration mode and the infinitely fast translation of the
concentration and the driving temperature grating into the measurable
heterodyne diffraction efficiency y"(t) = Cher(t). The instantaneous contribu-
tion of the temperature grating to the diffraction efficiency is expressed by
the D-function in g(t). After the sample, an unavoidable noise term e(t) is
added. The continuous signal y(t) is sampled by integrating with an ideal
detector over time intervals At to obtain the time discrete sequence y [ n ]
for processing in the computer.

There are several reasons why we focus on g(t) and not the entire
response function of the sample, g T ( t ) * g(t). The first one is trivial, since
our main interest is not heat transport but mass and thermal diffusion in
polymeric systems. Furthermore, experience shows that in a typical experi-
ment with long step-like excitations the measured amplitudes from both
modes are approximately equal. Since these saturation amplitudes are
proportional to the respective time constants Tth and T, it is straightforward
to show that this translates into a difficult-to-handle amplitude ratio of up
to 104 between the fast heat and the slow concentration mode in the total
response function gT(t) * g(t). By convoluting g T ( t ) into the excitation and
employing sample times Tth<< Tt << T the disparity between both signal
amplitudes reduces to a much more convenient O(T/Tt).

In summary, the TDFRS experiment converts an ideal time discrete
excitation x[n] into a time discrete signal y[n], involving both linear and
nonlinear components like the sample itself or the Pockels cell. The task is
to extract the response h(t) = g(t) from y[n] when x[n] is known. This
idealized view of the experiment is shown in the lower part of Fig. 2. All
the missing components from the upper part of Fig. 2 are treated as pertur-
bations, which can be accounted for in a well conducted experiment.

2.3. Selection of the Excitation Pattern

So far not much has been said about the excitation sequence x [n]
except that the considerations will be restricted to binary sequences of
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amplitude +1 and — 1, corresponding to 180° phase jumps of the
holographic intensity grating at maximum modulation depth. Such binary
sequences combine the advantage of high spectral power density for linear
heterodyne detection with easy experimental handling.

2.3.1. Noise Amplification

The total power P in the excitation is obtained from Parseval's theorem:

Since the power at zero frequency, |X[0]|2, merely adds a constant back-
ground without much information content, the requirement for maximum
excitation power P+ at positive frequencies is

P+ reaches a maximum for (x) = 0. Hence, an excitation sequence should
contain, at least, approximately the same number of +1 and — 1.

Further constraints are imposed by the unavoidable noise term e[n],
which adds to the signal:

The arguments are omitted, and the frequency domain notation has been
chosen for simplicity. After deconvolution the experimentally determined
memory function contains the true memory function plus an error term:

From Eq. (27) the amplification Uk of the spectral power density of the
noise is

and the integral noise amplification



U is minimized for a constant white power spectrum with |X[k]|2 = N
according to Eq. (24), yielding U = 1. All deviations from the constant
power spectrum increase the integral noise amplification U. They may,
however, be employed for noise suppression at selected frequencies.

Arbitrary random binary sequences generally have a globally flat
power spectrum but a high noise amplification due to a locally rugged
structure of the spectral power density with large values of Uk. Efficient
excitation sequences can be generated from random binary sequences by
successive optimization. This problem is equivalent to the one of minimiz-
ing the energy of an Ising spin system, where the spins are represented by
the excitation pulses ( +1 or —1) and the energy U is defined in Eq. (29).
With simple one-spin-flip optimization, where subsequently all spins are
tested and flipped only if the energy is reduced, U ~ 1.15 is easily achieved.
More sophisticated techniques, like simulated annealing, give only slight
improvements [13]. For practical purposes such optimized sequences are
almost ideal. As an example, optimization reduces the noise amplification
of a particular but arbitrarily chosen random binary sequence of length
N = 212 from U= 17.3 to U = 1.18, which is almost identical to the theoretical
limit U= 1 for all practical purposes.

Another class of suitable excitations with a perfectly white power
spectrum includes maximum length binary sequences (MLBS) of length
N = 2 L — 1 , L being a positive integer [10]. MLBS have been employed in
Hadamard NMR spectroscopy [11], and the deconvolution according to
Eq. (22) is efficiently computed by means of a fast Hadamard transform.
The performance of MLBS in TDFRS is approximately the same as the
one of optimized random sequences. Some peculiarities have been found for
MLBS with respect to systematic distortions introduced by the Pockels cell
[14]. The computational effort for MLBS of length N = 2L —1 and sequen-
ces of length 2L is comparable when fast finite Fourier transform algorithms
are used.

2.4. Corrections and Limitations

The parts of the experiment that have been omitted when using the
simplified description according to Fig. 2 necessitate some corrections and
impose limitations that are briefly discussed in the following.

Figure 3 gives a closer look of the measurement process for a
hypothetical sample, for simplicity without dissolved polymer. The binary
sequence x[n] = [ —1, — 1, 1, 1, 1, —1, — 1,...] is defined at times t = n Tt
and converted to the continuous excitation x(t), which keeps the value
x[n] from t = n Tt until t = (n +1) Tt as indicated by the dashed line in
Fig. 3a.

Thermal-Diffusion Forced Rayleigh Scattering 11
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Fig. 3. Details of the measurement: (a) ideal excita-
tion, (b) amplitude of the temperature grating and of
the heterodyne signal for c = 0, (c) effect of sampling for
y(t) –> y [ n ] , and (d) fictive correction to the ideal exci-
tation.

The temperature grating x"(t) (Fig. 3b) does not follow x(t) instan-
taneously because of its finite time constant Tth<<Tt and because there is
a delay of several us caused by the high voltage driver for the Pockels cell,
which is asymmetric with respect to the switching direction (d1 and d2). As
a consequence, everytime the excitation changes its sign, there is some
intensity missing in the excitation as shown by the shaded areas.

Sampling is done by integration from t = n Tt to t = ( n + 1 ) Tt, and the
result is stored in y[n] (Fig. 3c). To interprete the data as the average over
the respective interval, the time scale for g(t) is shifted by Tt/2 towards
higher values.

In the example, the effect of the missing area manifests itself for y[2]
and y[5]. The finite temperature response and the delay can approximately
be accounted for by adding a fictive excitation xf proportional to the
derivative of the ideal excitation to x[n]. The asymmetry d 1 — d 2 is incor-
porated in an analogous way, hence

12

xf[n] and xf(t) are shown in Fig. 3d. a and b are constants and can be
determined from separate measurements of the Pockels cell response and
Tth. In the language of digital signal analysis, a is due to aliasing of signal



intensity with frequencies above the Nyquist frequency wNy = P/Tt , which
are folded back into the frequency interval —woNy< wk< wN y . a = 0 may
be used for simplicity, in which case the thermal amplitude is spread over
a few data points instead of being confined to the first one according to the
D-function in Eq. (9). The area is, however, preserved. To avoid signal dis-
tortion due to aliasing of the interesting mass diffusion part of the spec-
trum, the sampling time should, as a rule of thumb, fulfil Tt < T/10 for the
fastest concentration mode. On the other hand, Tt should not be shorter
than necessary, since the signal-to-noise ratio can be shown to be propor-
tional to N1/2 Tt. This is an improvement by a factor of N1/2 over single
pulse D-excitations with pulse length Tt.

3. EXPERIMENT

The setup is almost identical to that used for previous experiments.
An argon ion laser (488 nm) is used for writing and a helium-neon laser
(633 nm) for reading. Switching of the grating is accomplished by 180°
phase shifts by means of a Pockels cell in one of the writing beams such
that +1 in the excitation sequence corresponds to a phase of 0° and — 1
to 180°. A reference wave is provided by scratches or dust on the sample,
serving as local oscillator. The phase between the reference and the signal
beams is adjusted by means of a piezo-mirror. A PMT in photon counting
mode is used for detection. A custom made plug-in card in a PC is used
for photon counting and also controls the timing and synchronization
between the excitation sequence and the measured PMT signal. The mea-
surements are done in bursts of several repetitions of the excitation
sequence x[n], where the first N data points are discarded. Since the
system memory is much shorter than N Tt, truly periodic boundary condi-
tions are achieved.

All experiments were conducted in heterodyne mode, and the TDFRS
setup and the separation of homodyne and heterodyne signal components
have been described in detail in Ref. 7. The solutions are slightly colored
with quinizarin to adjust the optical density to 0.02 at the writing
wavelength. The path length of the optical cell is 200 um. All measurements
have been performed at room temperature.

4. RESULTS

Figure 4 shows an experiment on almost monodisperse polystyrene
(PS; M ~ 250,000 g . mol–1) in toluene at a concentration of c = 0.0205.
The scattering vector q = 9213 cm–1 is well within the hydrodynamic limit
qRg<<1, where the pure center of mass diffusion is observed. Rg is the

Thermal-Diffusion Forced Rayleigh Scattering 13
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Fig. 4. Memory function g(t) as obtained from an optimized ran-
dom binary sequence with W = 2048. The inset shows a section of the
excitation sequence and the corresponding measured heterodyne
sample response.

radius of gyration of the polymer. The upper part of the inset is a section
of the pulse train of the optimized random binary sequence of length
N = 211 used for excitation with a time resolution of Tt = 140 us. The lower
part of the inset represents the normalized heterodyne diffraction efficiency.
The main portion of Fig. 4 shows the concentration part of the memory
function g(t) as obtained by deconvolution. For the diffusion time constant
T= 13900 us, D = 5.5 x 10–7 cm2 . s–1 has been found.

The amplitude of the temperature signal in g(t) is normalized to unity
and not plotted in Fig. 4. Due to aliasing, it is spread over the first three
data points.

A comparison between TDFRS and PCS for a solution of a bimodal
molar mass distribution is shown in Fig. 5. The sample is a mixture of two
PS with 895 and 250,000 g . mol–1 and a dispersity of Mw/Mn~1.03 in
toluene at concentrations of 0.0166 and 0.00228, respectively.

The heterodyne decay functions for a TDFRS experiment with pseudo-
stochastic noise excitation and for a TDFRS experiment with step-excitation
are plotted together with the electric field autocorrelation function from
PCS in the upper half of Fig. 5. The PCS experiment has been performed
at an angle of 90° and a wavelength of 647 nm and the time scale has been
shifted according to T a q–2. The TDFRS parameters are Tt = 140 us and
N = 2047. Blocks of 16 repetitions of the excitation sequence have been
accumulated between phase stabilizations for heterodyne detection, and the
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Fig. 5. Comparative measurement of bimodal PS in toluene
with PCS and TDFRS with optimized random binary
sequence and with step excitation: decay functions (upper)
and rate distributions (lower). The fast mode of the light
component (895 g . mol– 1) is marked by arrows.

signal has been averaged over 488 such blocks. The same overall time has
been used for all three experiments. The solid lines are biexponential least-
squares fits. Both modes are clearly visible in the TDFRS measurements,
whereas the PCS correlation function is completely dominated by the slow
mode of the high molar mass, despite the seven-fold higher concentration
of the low molar mass component. In a PCS experiment on the low molar
mass component alone, no diffusion process that exceeded the baseline
noise could be observed.

15
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The lower half of Fig. 5 shows the rate distributions for TDFRS with
pseudostochastic noise excitation and for PCS as obtained from an inverse
Laplace transform using CONTIN [15]. Again, both components are
clearly resolved by TDFRS. The PCS rate distribution shows only a large
peak for the slow mode. The tiny peak at T-1~1.7 x 10 -3 s-1 is probably
an artifact, since its rate is too high when compared with the well resolved
TDFRS. The amplitude ratio obtained from the rate distribution for g(t)
is 6.8, which is reasonably close to the one expected from the polymer
concentrations and the refractive index increments: [ c 1 ( d n / d c 1 ) p , T ] x
[c 2 (dn /dc 2 ) p , T]-1 =5.9. For the refractive index increments the zero con-
centration values (0.0736 and 0.0907) of the respective molar mass
polymers (895 and 250,000 g • mol - 1 ) have been determined using an inter-
ferometric refractometer [16]. The molar mass dependence of ( d n / d c ) p , T

is due to end group effects of the short chains. From g(t) the thermal
diffusion coefficient is calculated according to Eqs. (10) and (11) as
DT= 1.12 x 10- 7 c m 2 - s - 1 - K - 1 , which is in excellent agreement with
results found previously in the same laboratory [6].

Figure 6 shows the diffusion susceptibility, which has directly been
obtained from the measurement as the Fourier transform of g(t) from Fig. 5,
plotted as \G(O)\2 . The solid lines are least squares fits of the two Lorentzians
corresponding to the two approximately exponential modes in g(t):

Fig. 6. Diffusion susceptibility |G(O)|2 as obtained from the
measurement of g ( t ) in Fig. 5 with the least-squares fit of two
Lorentzians, which are also plotted separately.



5. SUMMARY AND CONCLUSION

Signal generation in heterodyne TDFRS can be formulated in the
language of linear response theory. For the measurement of diffusion pro-
cesses it is advantageous to focus on the concentration modes and to lump
the temperature response into the excitation. Especially for dilute polymer
solutions the response function g(t) of the concentration modes shows
interesting properties such as concentration proportional amplitudes of
the individual molar mass components. While, due to the poor signal-to-
noise ratio, a straightforward measurement of g(t) as response to a D-excita-
tion is not feasible, pseudostochastic random binary sequences provide an
elegant and efficient access to g(t).

For a correct interpretation of the experiment, various corrections and
limitations must be considered to avoid problems from, e.g., aliasing. Per-
fectly white power spectra are realized with MLBS. Optimized random
binary sequences offer almost the same noise amplification and the addi-
tional opportunity of coloring the excitation spectrum by shifting energy
into interesting frequency ranges. A detailed discussion of colored spectra
is, however, beyond the scope of this paper.

Besides the direct measurement of the linear response function, pseudo-
stochastic random binary sequences provide additional advantages such as
time-scale delocalization and frequency multiplexing. As a consequence of
time-scale delocalization, a singular perturbation from, e.g., dust particles
does not deform the decay function locally but is spread over the entire
time axis as random noise. Frequency multiplexing drastically reduces the
stability requirement for experiments in the frequency domain in order to
obtain the diffusion susceptibility G(w). If all frequencies were measured
subsequently, stability over the whole duration of the experiment would be
required, whereas frequency multiplexing reduces the stability requirement
to several excitation periods N Tt.

From a well-conducted experiment, precise values for the transport
coefficients are obtained, as has been demonstrated for a bimodal PS
mixture. For this polydisperse sample both components are resolved and
the low molar mass component has been recovered with a large concentra-
tion proportional amplitude, whereas the PCS correlation function is
dominated entirely by the heavy component.

A critical assessment of the experimental errors and the achievable
accuracies of the transport coefficients is by no means a trivial task. Poten-
tial sources of error, such as excessive sample heating and convection, and
the achievable signal-to-noise ratio as a function of the experimental
parameters, have been discussed in detail in Ref. 7 for TDFRS with long
exposure pulses. In principle, similar arguments apply to stochastic
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TDFRS, with the difference that low-molar mass components are not
masked by the presence of relatively little high-molar-mass material. Unfor-
tunately, there are also new sources of error, that stem from imperfections
in the switching behavior. These errors accumulate because of the large
number of 180° phase switches in stochastic TDFRS. Under favorable con-
ditions, we estimate the achievable accuracy to be approximately 1% for
both D and DT. In case of polydisperse samples, the same accuracy can be
achieved for the average diffusion coefficient (D), but the individual
modes in a broad rate distribution are certainly less precise. Clearly,
accurate values for D and DT require the precise knowledge of the refrac-
tive index increments [16] and of the grating vector q.
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